XIII
Applications of Paraconsistent Logic

G. Priest and R. Routley

1. Introduction: the variety and types of applications

The most important application of paraconsistent logics is their application
to possibly inconsistent theories. However one needs to interpret “theories”
here fairly liberally, as any body of doctrine, statements, axioms etc. which
can be thought of as inferentially closed. The theories can be historical,
current, embryonic or merely entertained. Of course the formalization of
such theories often requires much wider logical apparatus than the mere
first order deductive logic discussed in the introduction to Part Two of the
book. This may include probability, inductive logic, the logic of various
modalities and other intentional notions such as belief, and so on. Such
things, or at least some of them, have been considered by logicians. But, ,
by and large, the logical theories produced have been tuned to classical or
at least intuitionist logic. This is singularly inappropriate since as often as
not, the material to which the logical apparatus is applied is inconsistent,
as we shall see. Accordingly the ideas of paraconsistency need to be applied
to the logical theories of modality, probability, etc. themselves to produce
adequate logical machinery. In this essay we will consider first some interest-
ing inconsistent theories, some of them in some detail, and then move on
to consider the remodelling of various logical theories. It should be stressed
that the studies of many applications mentioned are in their infancy, and
- we can often do no more than make suggestions for the directions of future
research.

2. Historical and extant inconsistent theories.

There is a wide variety of inconsistent but non-trivial theories, some of
them important. And some of them are true. Some of these important true
theories, such as naive set theory, have been alluded to already in previous
introductory sections. Of course paraconsistentists are not committed to
the view that all contradictory theories are true—or even, if their position
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is weak enough, that any are true. Thus in many cases the formal reconstruc-
tion or paraconsistent representation of an inconsistent theory may be of
mainly or merely a matter of historical interest. Formalizations of Bohr’s
theory of the atom, Spinoza’s Ethics and Aristotle’s theory of motion,
inconsistencies and all, would be enterprises of this kind. These theories
are no longer alive, or active. However, an important philosophical con-
sequence of paraconsistency is that it allows the refloating of certain his-
torical theories which had been pronounced dead prematurely. Meinong’s
theory of objects (which we will discuss in the introduction to the next
part) is a theory of just this kind. (It went wrong because of imported
features of the prevailing logical paradigm.) For some theories, such as the
early theory of infinitesimals, it may not be clear which of these classes,
the alive or the dead, they are in. Fortunately this is an issue we do not
need to try to settle. We will start by giving a general overview of the range
of inconsistent theories and then consider a few of the more interesting
ones in detail. .

Inconsistent theories are to be found in almost every discipline, but
especially in:

2.1. Philosophy and theology

Among philosophical theories of this type we might mention the theories
of Heraclitus, Hume, Hegel, Frege, Meinong and Wittgenstein, and some -
dialectical theories of change. We will not examine these theories here,
since most of them are discussed elsewhere in the introductory chapters.!
Some of these theories have parts which are of live interest for the develop-
ment and elaboration of new theories. '

Within this general category of philosophical theories we might also put
certain theologies. In fact, most sophisticated theologies are inconsistent.
Some, such as Christianity, run into inconsistency over issues such as the
Trinity, the substantiality of God and the humanity of Christ. Other religions
such as varieties of Buddhism, especially Zen, seem to court contradictions
of the “mind is no-mind” type. In fact any religion which posits the existence
of an all powerful God will run into the standard paradoxes of omnipotence
(e.g. that He can invent a problem that He cannot solve, produce an
immovable object, etc.); and in a similar way the assumption of an omni-
scient God is open to paradoxes of omniscience.”

In virtue of this sort of problem, some theologies, both medieval and
modern, have bitten the bullet and allowed God to be an inconsistent object,
though this solution may create more theological problems than it solves
(e.g. how such an object can then exist, or be worthy of worship; how God
can interact with the world at all). Undoubtedly the philosophically most
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sophisticated of these inconsistent theologies is Hegel’s, where God is
identified with the Absolute, with Self-Positing Spirit. Indeed inconsistency
is part of the very essence of Hegel’s Absolute.’

It is not merely specific philosophical or scientific theories that are
inconsistent and call for applications of paraconsistent logic: the more
general theory of theories is also of this sort.*

2.2, _Natural and social sciences

As we have already begun to see, the sciences too have produced their share
of inconsistent theories. For example: Bohr’s theory of the atom, some
versions of the Everett-Wheeler interpretation of quantum mechanics, and
some other parts of quantum mechanics which involve causal anomalies
or the Dirac & function.” Some of these theories are certainly still of live
interest. Travelling a bit further back into history it is quite arguable that
Copernicus’s joint theory of astronomy and dynamics was inconsistent, as
were versions of the phlogiston theory, some theories of light, very likely
Aristotle’s theory of motion, and certainly earlier theories of motion which
admitted Zeno’s arguments.

The social sciences too have their share of contradictory theories. In
particular, Freudian metapsychology is inconsistent. More generally any
sociology or economics based on Marx’s theory of alienation is inconsistent.®
Similarly inconsistent is any theory incorporating conditions such as those
unearthed by Arrow, for a general social or environmental theory.’

2.3. Logic and mathematics

A further class of theories, especially rich in contradiction, is that belonging
to logic and mathematics. In this area we should cite, yet again, semantics,
the theory of attributes (and of propositions), set theory, and the early
theory of infinitesimals. It is almost certain that many other branches of
mathematics—perhaps most—were inconsistent in their early versions.
Recently research into the history of the growth of mathematics (as in

~Lakatos, 1976) seems to confirm this theme. However, the rewriting, and
" consequent transformation, of classical mathematics which has dominated
this century, from Principia Mathematica to Bourbaki, has made the true
historical situation more difficult to ascertain. But anyone who thinks that
mathematics has always been done a la Bourbaki is guilty of serious
historical anachronism.
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3. A more detailed look at some of these theories

Obviously we cannot (for want both of space and of research time) discuss
each of the above theories in detail. However, to give just-a flavour of the
investigation of inconsistent theories we will look at a few of them in more
detail. In particular we will look at semantics, set theory, the infinitesimal
calculus and some bits of quantum theory. We intend our discussion to be
as neutral as we can make it with respect to the underlying paraconsistent
logic we employ. But we will assume for the sake of definiteness that we
are basing our theory on a suitable quantificational extension of a relevant
logic such as that discussed in chapter V above (sect. 3.3). This is certainly
the most versatile paraconsistent logic as well as the most philosophically
adequate (as we argued in chapter V above). If another sort of paraconsistent -
logic is not suitable, we will mention this explicﬁtly.

3.1. Naive semantics

Semantics is the theory of satisfaction, truth, denotation and other relation-
ships between language and the world. No classical theory can adequately
express its own semantics, on pain of inconsistency. However, an incon-
sistent theory obviously can be allowed to express its own semantics. And
this is precisely what naive semantics does. Naive semantics is the theory
of truth, satisfaction, denotation, definition, etc., which is capable of giving
a semantics for itself.

This theory must be paraconsistently based because of the semantic
paradoxes, and cannot be based on any paraconsistent logic which contains
the absorption principle A- (A~ B)/A - B. This is because such a principle
would trivialize the theory (see again ch. V, sect. 3.3). There remains however
a good deal of scope for formalizing the theory in different ways: with one
satisfaction predicate or many; with infinite sequences, finite sequences,
and no sequences; as a many sorted theory or as a single sorted theory. We
have chosen a way that seems particularly simple. '

For every n=0 the theory has an n+1 place predicate Sat, such that
Sat,VX, .. .X,is thought of as “x; . .. X, satisfy y”. In this context y is thought
of as a formula with n free variables. We may suppose that if y has the
wrong number of variables or indeed is not a formula at all, Sat,yx, ... X,
is false. The only other non-logical symbol is a functor — 1 satisfying the
following formulation clause: '

if ¢ is any formula or term, —¢ is a closed term.

—¢—1 is thought of as the name of ¢.
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The theory has the family of axiom schemes:
Sat,m@TX; ... X, > @(Vi /Xy ... Vi /X,) (SS)

where v; ...v; are the free variables of ¢ in increasing order in some
standard enumeration, and v/x denotes the substitution of ‘x’ for ‘v’.

The satisfaction scheme represents the naively correct and analytic prin-
ciple of satisfaction which generalizes claims of the kind

John and Mary satisfy ‘x loves y’ iff John loves Mary.

We could, at the cost of certain complications, simpllify (in one sense) the
axiomatization thus: if we restrict (SS) to the cases where ¢ is atomic, but
add recursive clauses such as

Sat,—¢ v X, ... X Sat,rdX; ... X,V Sat,re X, ... X,

the more general scheme can be proved. We will leave this as a non-trivial
exercise.

The theory gives satisfaction conditions for all the formulas in the
language including those which contain the satisfaction relation. It therefore
formulates its own semantics. Of course it is inconsistent. For if we let n=2
and take ¢ to be ~Sat, xx we get

Sat,—~Sat, xxy <> ~Sat, yy.

Now for y take —~Sat, xx—1 to derive what is, in effect, the heterological
paradox. ‘

Other semantic notions are simply accommodated. In particular, the
satisfaction scheme for n=0 is

Satyreie> .

Hence ‘Saty’ is the truth predicate for the language. As for denotation A,
if tis any closed term of the language, we simply take At—x as Sat, y =tx.
The satisfaction scheme for n=1 then gives '

Art—xex=t

The paradoxes of truth and denotation characteristically depend on
machinery that is not available in the very limited theory we have sketched.
However, if the axioms of arithmetic were added, giving the theory of
semantically closed arithmetic, the liar paradox, Berry’s paradox, and so
on, would be forthcoming in the usual way. The triviality of the theory
specified has not yet been investigated (except indirectly through its rep-
resentation in set theory). (On Berry’s paradox, see Priest, 1983.)
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Unlike naive set theory, naive semantics has not been much developed;
investigation of its theorems has not been carried very far. Much waits to
be done. However, the theory affords a clear axiomatization of the intuitive
semantical notions, which are built into natural language.

3.2. Naive property theory, set theory and category theory

Naive semantics encodes intuitive (and correct) views about truth, satisfac-
tion, etc. Naive property theory and set theory do the same for these notions.
Neither theory can be formalized non-trivially without paraconsistent logic;
neither can be formalized using a paraconsistent logic which admits absorp- -
tion without trivialization occurring.

Let us take the theory of properties first. This uses a variable binding,
term forming operator A such that Ax¢ is thought of as the property
expressed by the open sentence ¢ as a condition on x. The only additional
predicate required is 7, ‘has the property’.

The axiom scheme for properties is the obvious abstraction principle

| ynAxe < @(x/y) - (AP)

A slight generalization of the theory is provided by allowing for n-place
properties. For each n=0 we now have an operator A, which binds n free
variables, and an n+ 1 place predicate 7, (for which we will write only its
last argument to the right) which satisfies

Y1+ YnTahaXs -+ - Xn®@ © 0(X1/Y1 - - - Xn/ Yn)

When n = 0, this theory is just the theory of propositions, with Ao¢ expressing

the proposition that ¢, and 7, being, in effect, the truth predicate for

propositions. However, for simplicity, we will restrict our further discussion

to the fairly representative 1-place case. S
Again, the theory is patently inconsistent since we have

YyNAX(~X7X) & ~yny

Taking Ax(~x7x) fory gives the expected contradiction, the impredicativity
paradox. The non-triviality of this theory follows from that of naive set
theory which we will discuss shortly. o
Provided the language we are using contains modal functors, we can
express the familiar identity condition for properties, namely that two
properties are the same iff they are necessarily coinstantiated, i.e.

y=x< LVz(zny < znx).
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At this point we should perhaps warn that the precise formulation of the
axioms for = itself, is a sensitive business. The simple substitutivity principle

x=y->(p(z/x) < @(z/y))

leads to curiosities such as x=y-> (¢ > ¢), and to irrelevance. Moreover
there are good reasons for supposing it to be invalid if the language in
question contains more highly intensional functors concerning belief, etc.?
The formulation of naive set theory is now a simple business. For the
only real difference between sets and properties as usually conceived, lies
in their identity conditions. Thus if we write ‘e’ (is a member of the set)
for“n’ and ‘{z|¢} (the set of objects z which ¢) for ‘Az¢’, the abstraction
scheme for properties AP, becomes the abstraction scheme for sets AS:

ye{xlo}e o (x/y). (AS)
The identity condition for sets amounts to the familiar extensional one:
x=yoVz(zeyozey).

Naive set theory is the one inconsistent theory that has had its theorems
investigated, at least to a certain extent. In particular, virtually the whole
apparatus of basic set theory, Boolean operations, ordered pairs, functions,
power sets, etc., can be developed in much the same way as normal, though
some changes are necessary. For example, if we define the null set A in the
usual way as {x/x# x) then we can no longer prove that A cx since this
trades on the paradox of material implication A- (~A- B). However, if
we define A as {x|Vyxey} this and the other usual properties of A are
forthcoming. That there are infinite sets is also provable in a simple way.
For example, let V be the universal set, defined as {x|3y xey}. Then V is
mapped into a proper subset of itself by the map x> {x}. Hence V is infinite.
Thus naive set theory appears to provide for the set theory required in all
normal mathematics.” The extent to which classical set theory itself, includ-
ing the theory of transfinite ordinals and cardinals, can be developed or
represented is still an open problem, as is the problem of what interesting
structure inconsistent sets such as {x|x  x} have and yield."°

Let us return now to the abstraction scheme AS itself. If we formulate
the abstraction scheme without set abstracts, it is the usual:

JzVy(yezeo ¢)

where ¢ is arbitrary except that z may not occur in it. ;
The qualification is required in consistent set theories since if it is violated
inconsistencies are soon forthcoming. However this is no reason for keeping
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it in naive set theory, and the condition can be dropped. If we do this we
can prove the existence of some more interesting sets. For example, consider
the set defined thus:

xefeJuv(ueyaveurx=uv)) A Vuv,v,({uvp)efauvy)ef->v,=v,)

It is not difficult to check that f is a function and that for alluey, f(u) e u.
Thus f is a choice function on y, and we have proved the axiom of choice'’.
In fact we can take y to be V. Hence we have the global axiom of choice.
Obviously this raises the important question of whether the continuum
hypothesis or generalized continuum hypothesis can be settled by naive set
theory. The answer to this is as yet unknown. However it is known that
naive set theory is non-trivial even without the restriction on z in its
formulation.'? We will discuss the significance of this in the introduction
to the next part."”

Before we leave the topic of set theory we should mention the situation -
with category theory. If we take ZF set theory and define the notion of
category in the standard way, a category has to be a set. Thus we. are
precluded from considering such categories as the category of all sets.
Alternatively if we allow categories to be proper classes, we are not able
to consider the category of all proper classes or even all groups, since some
of these are proper classes. These are well known difficulties. Standard
solutions to them, such as the Gréthendeick hierarchy are not very success-
ful.'* However, if category theory is developed in naive set theory, we can
define such categories as the category of all groups and be sure that all
groups are in it. We can define the category of all sets, and since this is a
set it will be a member of itself. Similarly we can consider the category of
all categories. This not only frees the category theorist, whose hands are
chained by ZF, but also introduces exciting new possibilities within naive
inconsistent category theory. But to what extent these further non-well-
founded categories exhibit 1nterest1ng category theoretic properties remains
to be seen.

In this last part we have been concerned with inconsistencies involving
very large objects, such as certain infinite sets and categories. We turn next
to inconsistencies involving the very small: infinitesimals and microphysical
objects.'’

3.3. The infinitesimal calculus

The third theory we should mention is the theory of infinitesimals. It is
often suggested that the reworking by Robinson of the infinitesimal calculus
in terms of non-standard analysis shows that the theory was not really
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inconsistent. But however elegant and useful the non-standard analysis
theory of ¢ inﬁnitesimals is, it is a gross anachronism to suggest that it is
the original theory.'® For infinitesimals had to be genuine inconsistent
objects: in the calculation of a derivative, at different points, it had to be
assumed that an infinitesimal was both zero and non-zero. Thus the theory
is highly suitable for a paraconsistent formalization. Exactly how this is to
be done is, however, a subject which requires a good deal more research. .
For the present we consider only the following suggestion for an absolutely
naive infinitesimal theory, and some of its features.
" First, the theory is based on the second-order theory of reals, which, we
may suppose, is formulated to allow for specification of functions by
A-abstraction. Division is to be taken as a primitive symbol satisfying the
condition

1) x#0->x-y/x=y.

The theory has one additional function symbol ‘d’, ‘an infinitesimal part
of’, satisfying the two extra axioms

2) dx=0.
3) dx#0.

The derivative Df, of a function, f, can be defined in the usual way:

+ —
Df= Ax(f(x dx) f(x)>.
dx
Thus the derivative of f at x is the ratio of the change in fx produced by
aninfinitesimal change in x. The calculation of a derivative can now proceed
in the absolutely obvious way. For example, let f be Ay y*. Then

2 _ 2
Df=“<)tyy (x+dx)—Ayy (X))
N - dx
: 2,2 2\ .
=AX((x+dx) X )) ___/\x(2xdx+dx )
» dx dx
(dx(2x+dx))
=AX{—————).
dx

But by 3), 1) and the properties of A,

Df = Ax(2x +dx).
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And by 2) and the properties of A,
Df = Ax2x.

To prove various further properties of derivatives, extra axioms are
required, such as dfx = f(x + dx). However this will suffice to indicate some-
thing of the general shape of the theory. Perhaps the nicest thing about the
theory is the way it allows d to be what it was originally thought to be,
namely, an infinitesimal forming functor—where an infinitesimal is now
thought of as an infinitely small inconsistent object.

Regrettably, a nasty thing about the theory is that it is trivial, or at least
so close to trivial as to make no real difference (as observed by Dunn). For
0=1 can be proved, and thus applied to prove every equation. Since 0 =0+0,
(by 2), dx = dx+dx. Hence using 3) and 1), dx/dx = dx/dx+ dx/dx. There-
fore 1=1+1, whence 0=1, and disaster. A less naive, genuinely paracon-
sistent theory, which should be a conservative extension of arithmetic, will
have to proceed more circumspectly. There are various possibilities to be -
explored. One proposal is that arithmetical operations on infinitesimals be
limited. Another, suggested by the practice of the pristine theory, is that
axiom 2) is contextually qualified so that, e.g., it only applies in certain
d-contexts. The idea here is that while dx is not strictly zero, it is so close
to zero that suitably placed d-terms elsewhere can absorb it.

3.4. Quantum mechanics

There are many parts of quantum theory which suggest paraconsistent
formalization, because on the face of it they yield contradictions. Areas of
especial sensitivity as regards consistency are those concerning the collapse
of wave packets upon measurement, and in particular the matter of the
exact determination of operators such as those of position and momentum.
We will look briefly at some of these areas, beginning with the formalization
of the Dirac delta function.

Very commonly, quantum mechanics is formulated in terms of Hilbert
spaces. Thus the state description of a system is a member of the Hilbert
space, H, which is the set of total functions from the reals R to the complex
plane C, with suitable operations defined. There is no insuperable problem
in axiomatizing such a theory and we will leave it as an exercise for the
diligent reader.!” The important point at present is that it will imply that

VyeH,VxeR,yeC, y(x)=y.

Now to solve many problems it is necessary to invoke the Dirac &-
functions and to suppose them to be elements of the Hilbert space. The
é-functions are characterized by the axioms
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(i) 5x€ HAa8,=6F
(i) Vy #Xx 8,(y)=0
(iii) 5 8.(y)dy=1.

If we add these to the axioms for the Hilbert space we can quickly derive
an inconsistency. For since 8,€ H, VyeR, 3zed, §,(y)=z. Thus 3zed
8,(x) =z. But since 8, = 8%, z is real. Hence jfz 84(y)dy =0. Contradiction.
Thus the theory as it stands requires paraconsistent formalization. That
the theory is in deep classical trouble was observed by von Neumann.

The method of Dirac...in no way satisfies the requirements of mathematical
rigour—not even if these are reduced in a natural and proper fashion to the extent
common elsewhere in theoretical physics. For example the method adheres to the
fiction that each self-adjoint operator can be put in diagonal form. In the case of
those operators for which this is not actually the case, this requlres the introduction
of “improper” functions with self-contradicting properties.'

Of course a paraconsistent reformulation is only one way of surmounting
the problem, and we are certainly not claiming that it is the best. The theory
of the Dirac §-function can for instance be formalized using the theory
of distributions, though the adequacy of this formalization is another
question. All we are claiming is that this is one not unreasonable formal-
ization and one, moreover whose consequences it might well be fruitful
to investigate.

More immediate than the problems of the 8-function or general wave
packet reduction are, what underlie these problems, the causal anomalies
of quantum mechanics. Perhaps the simplest example is provided by the
famous two-slit experiment: Suppose we fire a beam of light through a
screen with two slits, A and B, in it. Having passed through the slits the
light hits a screen. We wish to make sense of this in particular terms. If one
slit is open a certain characteristic pattern of light is observed on the screen.
If the other slit is open a similar pattern is observed. It would seem that if
both slits are open the pattern obtained should be the simple superposition
of these two patterns; but it is not. Consider first the proof that it should
be, before the weak points in it are assessed. The intensity of light at a
certain point x on the screen is determined by the probability of a photon -
hitting it. Let us write r for ‘a photon hits x°, a for ‘a photon passes through
A’ and b for ‘a photon passes through B’. We are interested in Pr(r/avb).
This can be calculated as follows: :

Pr(r/avb)=Pr(ra(avb))/Pr(avb).

*) =Pr((raa)v(rab))/Pr(avhb).

(**) - =Pr(rna)/Pr(avb)+Pr(rab)/Pr(avb),
since ~((rab)a(raa)).
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(***) ~(anb). Hence Pr(avb)=Pra+Prb,
and by symmetry Pra="Prb.

Thus . .
Pr(r/avb) = Pr(r A a)/2 Pra-+Pr(r Ab)/2 Pr b =4(Pr(r/a) + Pr(/b)).

Orthodox quantum logic tries to block the proof of stage (*) by rejecting
distribution. While this does what is required in the given two-slit example,
there is good reason to doubt that the strategy succeeds in the larger quantum
mechanical context in which it has eventually to be set. For, firstly, the
damaging superposition proof can be adapted to work with what orthodox
quantum logic appears to allow; and secondly, when combined with arith-
metic, which is essential to any larger venture, orthodox quantum logic
permits the proof of distribution.'® Paraconsistent strategies are different.
Leading paraconsistent options are to reject steps (**) and/ or (***). Accord-
ing to the stronger, dialethic option, even though ~(aab) is true, aab is
not thereby ruled out. Hence both those steps of the argument fail. 20 What
this means in' qualitative terms is that the particle which obviously cannot
pass through both slits, actually does so. Far fetched as this may seem, once
the idea that some inconsistencies are true is taken seriously, who is to say
that some inconsistencies are not realized at the micro-level? (That micro-
particles are not also waves?) It would be very strange; but we already
know that strange things happen in this domain. In fact, given that the
other steps of the argument are acceptable, the experimental evidence shows
that sometimes a particle must (as a wave) pass through both slits,”! even
though this is impossible!

Once we have our eyes attuned to the possibility of particles doing the
impossible, several other phenomena in quantum physics spring to mind,
for example, the penetration of a potential barrier by a particle with
(classically) insufficient energy. However we need not pursue this issue
further.

- On the face of it the quantum-theoretical account of measurement is also
inconsistent. For ‘the result of a measurement is a superposition of vectors,
each representing the quantity being observed as having one of its possible
values’: yet ‘in practice we only observe one value’, not many.** The
predicament of Schrodinger’s cat provides a celebrated example of the
problem: the wave function for the system has ‘a form in which the living
cat and the dead cat are mixed in equal proportions’ (De Witt, p. 31), but
only one cat, a living or else a dead, is observed. There are several well
known attempts—none particularly convincing—to resolve the matter, to
consistencize in a coherent way; in particular, the Copenhagen collapse of
the wave-packet, the hidden variable interpretation, Wigner’s conscious
interference proposal (see De Witt, p. 32). A different attempt—very much
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in the tradition of Jainist pluralism and discursive logic—is the EWG
(Everett-Wheeler/ Graham) interpretation, according to which all the pos-
sible values are realized in different worlds, to a distinguished one of which
we observers are confined. The semantical framework of discursive logic is
ready-made for the interpretation. But despite its paraconsistent connections
the EWG theory is not really a paraconsistent one at all. For the branching
tree of alternative worlds fits in an evolving Hilbert space (that of the nested
superposition) which conforms to classical logic.”

4. Paraconsistency and wider logical notions

Let us now consider the application of paraconsistency to the theories of
logic themselves. What an adequate paraconsistent logic does, at bottom,
is to provide canons of good reasoning that can be used in all situations—
including the many that misbehave classically.** However, it is but a limited
basis for this. For it will account at best for deductive reasoning concerning
a very restrictive class of logical notions. Beyond that there are other types
of reasoning, such as inductive methods, and—not unrelated—there are
many other notions we use in our reasoning, such as probability, various
modalities, and so on; and each of these notions and types of reasoning
must be properly tuned to the paraconsistent. We will make a beginning
on showing how some of the adjusting of notions is to be accomplished in
subsequent subsections. But first let us consider a little more generally the
matter of the construction of adequate logics.

4.1. Reason, inference, fallacies, and the inconsistent

As should by now be very clear, reason and inference do not break down
in inconsistent situations (whatever the friends of consistency in logic and
artificial intelligence may say). If one finds an inconsistency in one’s reason-
ing one certainly does not invoke ex falso quodlibet and conclude that one
ought to accept everything; nor does one grind to a complete halt. Of course
it is common, once one finds a contradiction, to take evasive action, to
modify one’s views until they are consistent. But common enough though
this is, it is by no means rationally obligatory. The rational thing to do may
well be to accept the contradiction, or at least to see what emerges from it.
We will discuss this further in the introduction to the next part. The important
point for now is just that a theory of reason certainly must be paraconsistent.
The attempt of much recent literature to provide an account of rational
human reason based on classical logic and probability theory, from which
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human inferential practice frequently and perversely deviates—is mis-
guided. The classical theory is no ideal, but is itself defective.

Reasoning (whether artificial or natural, human or otherwise) is of several
types: deductive, inductive, analogical, dialectical.”> A logic for each one
of these kinds of reasoning should tell us which principles of inference to
accept. Moreover, each kind of reasoning will have associated fallacies,
inferences that it is the business of logic to reject. Formal systems such as
those of paraconsistent sentential logic codify only a small part of reasoning
practice, namely some accepted principles of deductive reasoning.

Such systems can be expanded however, in the fashion of Lukasiewicz,
to encompass rejected rules of deductive reasoning too, through rules of
rejection. In this way they can reflect and help codify classes of fallacies.
But even this enterprise has not yet been undertaken for intensional logics,
though it would have interesting features. For example, central principles
of classical logic would be rejected as fallacious in paraconsistent logic. In
particular such obvious fallacies of relevance as the Lewis paradoxes would
be rejected: ie., ipA ~p->q,-q>pv ~p. Given the expected linkage
between assertions and rejections, e.g.

(*) ~(A>B)>(—A-FB)
(**) +=(A->B)>(4B->—A),

several other rejections would follow, perhaps most controversially,
—pA(~pvq)~>q. Forsince,-par~p>pa(~pvq),(pa(~pvq)=>q)~>
((p A ~p)—q), whence, using (**), instances of the disjunctive syllogism
are rejected. (In a similar way, given the set abstraction scheme, it
can be shown that instances of A A (A - B) - B are rejected in depth relevant
logics.)

To provide an adequate norm for reasoning, the reach of relevant/para-
consistent logic has to be expanded beyond the state to which it has currently
advanced. Even when this has been accomplished, there remains the ques-
tion of the relationship of norm to practice. Analytically, the norm is a
guide to correct practice and correct practice must bear some suitable relation
to practice (though teaching and brainwashing can seriously affect the
relation). Anyway this question is a little premature at the moment since
there has been little unbiased testing of the way people (and other creatures)
actually reason, especially in inconsistent situations. It is enough for the
present purposes, however, that clear cases of irrelevance, such as the Lewis
paradoxes exhibited, are widely recognized in preanalytic thought as falla-
cious or mistaken, and that reasoning continues, in non-classical fashion,
in incomplete, inconsistent and paradoxical situations. For this indicates
that the normative theory of reasoning adopted should be a relevant/para-
consistent one. '
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4.2. Extending paraconsistent logic by mtenszonal functors modal
and tense operators

With this firmly in mind let us revert to the question of the tuning of notions
used extensively in reasoning to the paraconsistent, beginning with, what
is relatively straightforward, modal and tense notions.

Tense and modal operators can be added to a paraconsistent logic in
standard syntactical and semantical ways. Consider, for example, logical
modality from a semantical slant. Let K be a class of evaluations suitable
for a paraconsistent logic. (These might be da Costa evaluations for C,, a
set of Routley/Meyer worlds, a set of truth filters on a De Morgan lattice,
etc.; see the introduction to Part Two.) Let R be some binary relation,
considered as relative possibility, with domain K. Then in the usual way,
we can define: '

(1) qu holds at w € K iff for all ve K such that wRv, ¢ holds at v.
(2) Mg holds at we K iff for some veK such that wRv, ¢ holds at v.

What modal principles hold for the logic so defined depends, of course, not
only on relation R but on the underlying paraconsistent logic. However,
for most paraconsistent logics it is easy enough to produce paraconsistent
versions of such systems as T, S4, S5, etc. Completeness proofs are usually
forthcoming from a fusion of the completeness proofs for standard modal
logics and those of extant paraconsistent logics.”

Such paraconsistent bases allow for the elaboration of essentially novel
modal logics. Little has as yet been done in this area, but we might mention
as an example systems formed by adding Nietzsche’s theme: Mo—every-
thing is possible.”’

Any normal modal logic which contains Nietzsche’s theme is inconsistent,
but if the underlying logic is paraconsistent, there is no reason why
it should be trivial. In fact, all we need to realize Nietzsche’s theme in a
modal model structure is that the structure contain the trivial evalu-
ation/world (where everythmg is true). Of course, though this is sufficient
it is not necessary.

- The addition of tense operators to a paracons1stent logic is also falrly
straightforward. The truth conditions for G (it will always be the case that)
and F (it will be the case that) are given by (1) and (2) with ‘G’ replacing
‘L’ and ‘F’ replacing ‘M’. The truth condition of H (it has always been the
case that) and P (it was the case that) are given in the same way except
that R is replaced by its converse R. R is now thought of as temporal order.”®

Paraconsistent tense logic is important in connection with the dialectical
theory of change. It is sometimes said that the postulation that time is real
is necessary to restore the contradictions produced by change. What is
meant by this is that if a thing changes it is both P and not P. The apparent
contradiction is resolved when we admit that it is P at one time and not P
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at another. (So Idealists such as Bradley who denied the reality of time
were therefore forced to admit that change involves contradiction. Because
of this they relegated change to the realm of appearances, which, unlike
reality, could be inconsistent.) Even if the postulation of time is necessary,
it is certainly not sufficient. For there may be instants of time at which a
contradiction holds. This is precisely what those who accepted a dialectical
account of change believed. Something which is moving from here to
somewhere else is, at one and the same time, both here and not here.”®> And
more generally if something is changing from P to not P at a certain instant
it is both P and not P. Let us call this view. Zeno’s principle since it was he
who first argued it. Then within a paraconsistent tense logic this view results
in principles such as

(ANF~A)>F((Ar~A)AF~AAPA) - (2)

and its past/future dual. The completeness of (Z) with respect to Zeno’s
principle is obviously a question which depends upon many details concern-
ing the underlying logic, so we will not pursue it here. However it is clear
that to make much sense of Zeno’s principle a paraconsistent logic is
required. For classically we can prove ~F(A A ~A) and hence ~(AAF~A)
i.e. there is no change. Thus (Z) plus classical logic produces Parmenides’
position, that there is no change. Hence paraconsistent tense logic is an
important logical theory for investigation of the dialectical account of
change. But principle (Z) and its further logical consequences remain to
be investigated.

4.3. Moral dilemmas: deontic logic

Another philosophically significant extension of paraconsistent logic is that
to deontic logic. The deontic operators ‘O’ (it is obligatory that) and ‘P’ (it
is permissible/permitted that) can be added in much the same way as the
modal operators of the previous section were. We can now think of the
relation R as one of “moral accessibility” (i.e. xRy means that y is obtained
from x by the performance of some morally permissible acts) or alternatively
as affording access to ideal worlds (i.e. y is ideal as seen from x). The truth
conditions for ‘O’ and ‘P’ are obtained simply by replacing ‘L’ with ‘O’ and
‘M’ with ‘P’ in (1) and (2) of the previous section. As usual a range of
deontic logics is obtained by allowing R to have various properties. Details
of sound and complete axiom systems depend, of course, also on the
underlying paraconsistent logic, as does the range of deontic systems encom-
passed. _

Paraconsistent deontic logics are particularly important; for they rectify
the gross distortions of the concepts of obligation that obtain in classically
based deontic logics. For example, it is notoriously the case that we may
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incur inconsistent obligations. Examples of moral dilemmas abound in the
literature. Not all of these are cases of inconsistent obligations. Some moral
dilemmas are just situations where it is difficult to decide what the right
thing to do is. Others are cases where there is no inconsistency since it is
clear that one prima facie obligation is overridden by a more important
one. For example the obligation produced by my promising to arrive home
at a certain time disappears if [ delay to save someone’s life. However there
are cases where we do end up with genuinely inconsistent obligations.? I
promise to go to dinner with x the next time he is in town. I promise to go
to dinner with y, and x announces that he will be in town during that time
(and only that time). Let us write X for ‘I go to dinner with x” and Y for
‘I go to dinner with y’. Thus we have both OX and OY. But assuming that
I cannot go to dinner with one if I go to dinner with the other (maybe
because they will be in different parts of town), we have X - ~Y. And since
OX, we obtain O ~Y. (If this inference be doubted, just consider the case
where I promise x I will do something and, forgetfully, I promise y I will
not do it.) Hence we have OY A O ~Y, which is equivalent to O(Y A ~Y).”’

This last formula describes a realizable state of affairs. Yet it cannot be
true in any world of standard deontic logic. However, worse is to come.
For classically = YA ~Y - A. Hence, distributing O, - 0O(Y A ~Y)-> OA.
Thus according to classical deontic theory if I incur inconsistent obligations
I ought to do everything. This is ridiculous. In the situation described it is_
obviously not permissible, let alone obligatory, to go and shoot one of the
friends or some innocent bystander. However, even worse is to come.
Assuming (as for usual deontic logics) that every world has some accessible
extension, we have —~ (OY AO~Y), and thus — (OY A O~ Y) - B. In other
words, by making inconsistent promises I bring it about that Paris is the
capital of China. In fact I make the world trivial!

~None of these ridiculous consequences follow from a paraconsistent
deontic logic of the relevant sort: there are worlds in which O(A A ~A) is
true and (therefore) (OAA O~ A)- OB (and a fortiori (OAArO~A)~ B))
fails. ' '

One important consequence of this approach is that the Kantian dictum,
Ought implies Can, i.e. ‘everything that is obligatory is possible’ (or con-
versely ‘if something is impossible it is not obligatory’), needs to be rejected.
On the semantics given it is of course true that OA > MA (at least when
the deontic R is-a subrelation of the altheic R, and Vx3yxRy for the deontic
R). But presumably if O(A A ~A) is true at w, all the worlds accessible to
w will be “impossible” worlds. But the Kantian moral maxim presumably
means that everything that is obligatory is true in some possible world. So
let C be the set of consistent (classical) worlds or evaluations. If we
characterize a connective M’ thus:

M'A holds at w iff, for some x in C such that wRx, A holds at x,
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then the intended Kantian maxim is expressed by OA—->MA But this
obviously fails in general.

We have taken our examples of inconsistent obligation from the area of
morals. But the sphere of obligation is obviously much wider, and it would
be easy to produce inconsistent obligations by considering political situ-
ations, legal systems, contracts, constitutions, games and so on. 32 Thus the
application of paraconsistent deontic logic has broad scope.

Virtually all the points we have made concerning inconsistent obllgatlons
can be repeated with respect to inconsistent orders (which may be produced
both intentionally or by accident). Hence our discussion applies mutatis
mutandis to imperatival logics. Satisfactory imperatival logics will be para-
consistent. : S

4.4. Belief systems: doxastic logic

Thought is more comprehensive than reasoning. While reasoning is included
in thought, thought also involves assumption and (as the term is commonly
used) belief. Reasoning proceeds in accord with principles; thought may
involve the adoption of the principles, reflection upon them, and much else,
Reﬂectlon alone, before assumption and beliefs are brought in, may include
more than reasoning: it may include such things as sorting or assembling
and comparison of things so sorted or assembled. The operations included
in reflection beyond those of reasoning have been little investigated in
modern logic, though they were included, at a time when psychology was
in a much more primitive state, in traditional logic and are sometimes said
to have an important place in Hegel’s logic, and so in dialectical logic. With
belief, and to a lesser extent assumption, the situation is somewhat better:
elements of doxastic logic have been furnished, though mostly on an
inadequate classical basis, by direct analogy with weaker modal logics.

A key feature of belief, as of many psychological functors, in contrast to
reason, is that it is not deductively closed. A creature may perfectly well
believe A but not believe B though B is deducible from A. Thus the following
theses of some doxastic logics should be rejected:

(A-> B) - (xBelA - xBelB)
((A-> B) A xBelA) - xBelB.

Other principles that need to be rejected are various con31stency postu-
lates, in particular

~xBel(Aa~A)
xBel ~ A > ~xBelA.
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It is clear that'an agent may well believe a contradiction either wittingly or
unwittingly. Moreover (as we will argue in the introduction to the next
part), the agent may rationally believe a contradiction. The rejection of
consistency postulates would cause serious problems if we were to try to
base a doxastic logic on classical possible-world theory. However, the more
general worlds-theory of paraconsistent logics enables the rejection of these
principles without any trouble.

In contrast to standard modal logics doxastic logic is very weak. (Indeed
this is little more than a corollary of belief not being closed under entail-
ment.) For this reason it is characterized as much by the principles it rejects
as by those it accepts. But one might well wonder whether one should
accept any principle that involves belief essentially. In fact, one should. An
example is the conjunction principle

xBel(A A B) «>.xBelA A xBelB.

While simplification, xBel(A A B) >.xBelA A xBelB, is not in much dispute,
its converse, xBelA A xBelB - xBel(A A B), is moot. But it can be persuasively
argued that it correctly characterizes belief.>® This converse principle is
important. For amongst those who duly concede that our beliefs may well
be inconsistent, it is common to propose a non-adjunctive paraconsistent
logic,** on the grounds that though one may believe A and believe ~A one
will not believe A A ~A. Obviously if the conjunction principle for belief
is correct, this defense—one of the main defenses—of non-adjunctive sys-
tems, fails. '

The logic of rational belief, while certainly closed at least under more
elementary logical operations (such as adjunction no doubt), is, like the
logic of belief, not encumbered by consistency postulates. Hence it too is
not satisfactorily based on classical logic. Nor therefore, since probability
assignments are so intricately tied to rational belief assessments, is probabil-
ity theory—which leads to another major newer application (though one
with older roots).

4.5. Probability and inductive reasoning

The standard approaches to probability theory are squarely based on
classical logic. However, they can alternatively, and easily, be based on a
paraconsistent logic and, as we shall see, doing so produces a number of
advantages. There are many different approaches to classical probability
theory. One of the easiest to adapt to paraconsistency is Carnap’s. Let C
be a class of paraconsistent worlds/evaluations suitable for some paracon-
sistent logic. Let m be a normal measure function defined on C. In particular

385



then m(C) = 1. The probability of a formula A, Pr(A), may now be defined
as m({x e C|A holds at x}). It is easy to check the following:

(i) o0sPr(A)=<1

(i) if A entails B in the logic (i.e. if every valuatlon at which A holds,
B holds), Pr(A) < Pr(B)

(iii) Pr(Av B)=Pr(A)+Pr(B)—Pr(AAB)
(assuming that conjunction and disjunction behave in the normal
way).

(iv) if A is a logical truth (i.e. holds in all evaluations), Pr(A) = 1.

In general, all the principles of probability theory that do not concern
-negation will carry over straightforwardly into paraconsistent probability
theory. Typically, where paraconsistent probability theory diverges from
the classical theory is in the vicinity of negation. In particular, it will not
in general be true that Pr(A)+Pr(~A)=1. If (Av ~A) is a logical truth it
will certainly be the case that

1=Pr(A)+Pr(~A)—Pr(A A ~A),

by (iii) and (iv), but of course Pr(AA ~A) # 0 in general.

An especial advantage of this approach is the following. The standard
definition of conditional probability, Pr(A/B), is Pr(A A B)/Pr(B), which of
course makes sense only if Pr(B) # 0. It follows from what we have already
said therefore that Pr(A/B A ~B) may be well defined. Thus we can have
sensible evaluations of the probabilities of statements relative to inconsistent
data. Preanalytically, this is something we do all the time. For example we
estimate what is happening in various countries (with degrees of probability)
given the inconsistent newspaper reports we read. Yet according to the
classical theory this is impossible. More generally, it is a feature of many
paraconsistent logics (once again, the relevant and positive-plus systems,
but not the non-adjunctive ones) that any formula holds under some
evaluation, or more correctly, in some non-trivial class of evaluations. Hence
if we choose our measure with care, we can ensure that Pr(A) # 0 for all A.
This means that conditional probability is always defined—a very pleasing
feature. It might be said that if paraconsistently Pr(A) # 0, this shows that
a paraconsistentist is crazy enough to countenance anything. However
one could put it in a slightly less biased way thus: there is nothing
that a paraconsistentist will dogmatically and with a closed mind rule out a
a priori.

The non-classical behaviour of negation means that some parts of class1ca1
probability have to be reworked slightly. For example consider Bayes’
theorem. In the usual way we can show that Pr(h/e) = Pr(e/h) - Pr(h)/Pr(e).
Now suppose we have two hypotheses h and h, (the application to an
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arbitrary finite number is routine) and h and h, are exhaustive and exclusive
in sense that h, vh and ~ (h, Ah), are logical truths. Then
Pr(e) =Pr(ea (hvh,;)) =Pr((eah) v (e a b))
=Pr(eah)+Pr(eah;)—Pr(eahaenh,)
= Pr(h)Pr(e/h)+Pr(h,)Pr(e/h,) —Pr(hah,)Pr(e/h A h,)

Pr(e/h) - Pr(h)
Pr(h)Pr(e/h)+ Pr(h,)Pr(e/h;) —Pr(h, Ah)Pr(e/h; Ah)

, Thﬁs Pr(h/e) =

This is the paraconsistent two-hypotheses case of Bayes’ theorem. In the
classical case the last summand in the denominator can be dropped since
Pr(h, Ah) =0. However Pr~ (h; Ah) =1 is no longer a guarantee of this.*

Probability plays a role in many other logical theories, and often a
paraconsistent probability theory has a distinct advantage over a classical
one. For example in confirmation theory it allows for the high probabil-
ity/confirmation of contradictory hypotheses. For Pr(e/h) and Pr(~e/h)
may both be >3. (Indeed Pr(p/pA~p)=Pr(~p/pAr~p)=1.) This has
obvious connections with the grue paradox, where contrary hypotheses are
both confirmed by the evidence.

As another example, consider the theory of rational acceptance. It is
frequently mooted, and plausibly so, that a claim should be rationally
accepted just if it has a high enough probability. In obvious notation:

(1) Pr(A)=1-¢iff Rﬁt(A) (e<3)

Since, as we have seen, we may well have Pr(AA ~A)=1-—¢, Rat(AA ~A),
i.e. there are some contradictions that are rationally acceptable.

A standard problem with (1) is illustrated by the lottery paradox. Consider
a fair lottery with n tickets. Let us write A, for ‘Ticket n wins’. Then obviously
if we choose n large enough we have Pr(~A;)=1—¢, 1<i<n, whilst
Pr(A;v...vA,)=1. Thus the set of rationally accepted beliefs includes
{Ajv...vA,, ~A,,...,~A,} which is obviously inconsistent. This will not
bother a paraconsistentist. Similar remarks apply as regards the paradox
of the preface.*

It is often suggested in connection with rational acceptability, that the
set of things rationally accepted should be deductively closed. This is
obviously a serious problem for any classical logician who accepts the
conclusion of a paradox since this move would trivialize rational belief.
Plainly it is not a similar problem for a paraconsistentist. Despite this, we
think that the suggestion is incorrect. Indeed, it is easily proved that this
suggestion is incompatible with (1). For it is easy enough to produce
situations where logical consequence is probability decreasing. (Just consider
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{A, ~A} - A A ~A.) Hence if we accept both (1) and the deductive closure
of the rationally accepted, we could prove that there is an A such that
Pr(A)=1-¢ and Pr(A) <1—e&. This is a contradiction there is no sufficient
reason for accepting.

4.6. Information content and data processing

Just as standard probability theory is based on classical logic but may be
reworked paraconsistently to give a more satisfactory theory, so also can
other classically-based theories; for example, the same is true of classical
accounts of information content. Again, there are many possible approaches
to content, but one that is most easily generalized to paraconsistent logic
is due to Carnap and Bar-Hillel. ‘

Let C be a class of worlds (evaluations) suitable for some paraconsistent
logic. Then the information content of A, Con(A), is just C—{xe C: A holds
at x}. Assuming that conjunction and disjunction behave normally then
usual results about the contents of conjunctions and dlsjunctlons are forth-
coming, e.g.

(i) A entails B in the logic iff Con(B) = Con(A).
(ii) Con(Av B)=Con(A)n Con(B)
(iii) Con(A A B)=Con(A)u Con(B)

However, as is to be expected, results concerning formulas containing
negation differ. In particular we may have Con(A A ~A) # A. A contradiction
may therefore have determinate, non-trivial content, and different contradic-
tions different contents. Thus, claims that contradictions have no, or trivial,
content can be sustained only by insisting that the valuations or worlds,
over which content is defined, are consistent. Any justification of this is
liable to beg the original question.

If a numerical measure of content, ¢, is required we can take a suitable
measure function, m, defined on C and take

¢(A) =m Con(A).

Standard results about the numerical content of conjunctions and disjunc-
tion are then forthcoming. Relative content can be defined, etc’’.

The question of information naturally suggests a further application of
paraconsistent logic: data processing. We wish to store data in a computer:
and be able to retrieve it. However we usually want to do more than that:
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we want our computer to be able to make inferences from its data and to
give us the conclusions. Not only is this a question of efficiency (it is quicker
to program ‘John has brown hair and no one else has’ than ‘John has brown
hair; Fred has not got brown hair; Steve has not got brown hair, ...") but
we want to be able to determine the consequences of our data when it is
too large to handle humanly. Now notoriously, data collected from various
sources is liable to be inconsistent. Conceivably, one might want to test the
data before feeding it into the computer but even if an inconsistency is
found (and of course there is no decision procedure in general for incon-
sistency) we are faced with the problem of how to consistentize it without
throwing out too much data. In many ways it is much more sensible to let
the machine have it all. But now it is obvious that the computer must be
programmed with a paraconsistent logic. One that resulted in the computer
answering ‘yes’ to every question including ‘Is there a God?’ when fed the
speeches of virtually any politician would be useless. The question of how
best to construct such a practical implementation of a paraconsistent logic
in the computing field is an important one—one that will again depend, of
course, on the logic in questlon It is very tempting to think that the logic
should be a relevant one.’

4.7. Vagueness

Finally, it is worth noting the role of paraconsistent logic as the underlying
logic for a language with vague predicates. It is frequently suggested that
what characterizes a vague predicate is that in a certain range of application
objects satisfy neither the predicate nor its negation.”® However, what
intuition says is that the predicate and its negation are just as true of the
borderline object as they are false. Hence an alternative treatment, consonant
with this intuition, is that the object satisfies both the predicate and its
negation, and hence that the situation is paraconsistent.** Moreover, there
are reasons why this approach may be preferable, at least in particular cases
and perhaps in general. First, consider a colour transition from red to blue
through magenta. At the borderline area between red and blue, it seems
much more plausible to suppose the colour to be both red and blue, than
neither red nor blue. An argument that the paraconsistent approach is better
in general, is that truth-value-gap approaches characteristically produce a
failure of the law of excluded middle at the borderline area. Yet as Dummett
and others have pointed out*', this is not so plausible. In a borderline case
between orange and red, we would be inclined to say that the colour is
either orange or red, and it follows from this that it is either orange or not
orange. ‘
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Actually, no standard three-valued (or by parity of reasoning, finite-
valued) approach to vagueness is satisfactory, be it inconsistent or incom-
plete. This is because the area between definiteness and vagueness is itself
vague. This has suggested that a continuum (or at least a dense sequence)
of semantic values be used. As with the three-valued case, this can result
in either incompleteness or inconsistency, depending on the truth conditions
of negation and the set of designated values.”> As with the three-valued
case, there are reasons for supposing the inconsistent variant to be pre-
ferable. :

5. Conclusion

We have now given an overview of some of the applications of paraconsistent
logic. The view has concentrated on breadth rather than depth. (Even so it
can hardly claim to be comprehensive). What will be clear is that little more
than a start—if that—has been made on most of the topics we have intro-
duced. For a subject, the serious study of whose theory is little more than
20 years old, and which got away to a slow beginning, this is hardly
surprising. However, it will also be clear that the investigation of these areas
promises to be a fascinating task for paraconsistent theorists. The only thing
that would really surprise us about future work in these areas would be its
failure to produce surprises. ’

Notes

! See especially chapter XVIII, below.

2 See e.g. Routley, 1981.

? See section 5 of chapter II of this book. For a further discussion of contradictory,
theology, see section 3 of chapter I of this book, and also Pena, 1981.
* The semantics for relevant logic of Routley and Meyer, 1973, furnishes a fairly
general framework for the static elaboration of the theory of theories. The static
development is taken much further in Meyer’s unpublished work on the theory
of theories.

> See section 3 below.

®See chapter II, section 6.

’ For fuller explanauon and proof see Routley, 1980.

8 However, we will not discuss these i issues here. Details can be found in Routley,
1977, §7, and in EMJB.

® Further details can be found in Routley, 1977, §8.
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10 For initial investigations-of the latter issues, in somewhat stronger paraconsistent
settings, see Arruda and Batens, 1982.

11 See Routley, 1977, §8.

12 See Brady, 1989.

13 See chapter XVIII, sect 3.3.3.

14 See Fraenkel, Bar-Hillel, and Levy, 1973, pp. 1431 _

15 Symmetry of treatment would perhaps suggest a section on relativity theory,
indicating parts of the theory ripe or fit for paraconsistent reformulation and
investigation. Certainly relativity theory has generated its share of paradoxes.

16 At the time (circa 1740) ... mathematicians still felt that the calculus must be
interpreted in-terms of what is intuitively reasonable, rather than of that which
is logically consistent”, Boyer, 1949, p. 232.

7 Elementary quantum theory is axiomatized in this way by J. von Neumann, 1953.
As was customary with mathematical axiomatizations, the precise logical base is
not specified.

¥ Von Neumann, 1953. Von Neumann’s point has been adumbrated by Feyerabend,
1978, p. 157, and then set down in Mortensen, 1982, which we have made use of.

9 For the second, see Dunn, 1980. On the first see Gibbins, 1981.

20 Strictly this calls for a paraconsistent probability theory, an issue taken up in sect.
4.5 below. For elaboration of a non-dialethic paraconsistent approach to quantum
theory see Routley, 1977, where a relevant position is advanced. )

21 We can indicate—in a way—how it can happen, through the following sequence
of snapshots:

l | | l

g L @ D |
| | ! | |

1 2 3 4 5

Nothing stops visualizing the impossible or diagramatic representation of the
impossible: see EMJB, and also Canadian Education Program, 1982..

2 De Witt, 1970, p. 30. :

*® Rescher and Brandom say that ‘the systematisation of quantum-physics by the
Everett-Wheeler approach invites (though it does not irrevocably demand) a
logical apparatus that is inconsistency-tolerant’, 1980, p. 60 (italics added). But
they do not say how. Moreover on the basis of what they do say the possible
world theories of Democritus and David Lewis would equally invite “incon-
sistency-tolerant apparatus”—which they decidedly do not. (Accounting for the
‘maverick worlds’ of De Witt, p. 34, would require a larger apparatus: the semantics
for relevant logic would suffice.) -

>* This theme is much elaborated at the beginning of Routley, 1977.

2> We are certainly not claiming that these types are either exclusive or exhaustive.

% For details in the case of the most difficult of these, relevant logics, see RLR,
chapters 8 and 9, where multiply intensional relevant logics are much more fully
treated.

%’ Relevant logics of this kind are investigated in RLR, ch. 8, and the philosophical
issues involved are discussed in Routley, 1983. Nietzsche’s nihilistic theme also
has a notorious deontic analogue, Dostoievsky’s Axiom: Everything is permissible
(also investigated in the above sources).

> Further details can be found in RLR, ch. 8 and in Priest, 1982.

* Thus, e.g., Hegel, 1812, vol. I, bk. 2, ch. 2, §3.
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*® Many examples of such moral dilemmas are given in Routley and Plumwood, 1989.

*!' In non-adjunctive paraconsistent logics this principle is rejected (in our view
erroneously). In such theories there are moral dilemmas of the form OAAO~ A
but not of the form O(A A ~A).

32 As we discuss, in the legal case, in the mtroductlons to Parts Two and Four of
the book.

3 Arguments to this end are assembled in R. and V. Routley, 1975. The logic of
belief there outlined is improved upon and elaborated in EMJB 8.11.

** See e.g. Lewis, 1982, Rescher and Brandom, 1980, Schotch and Jennings, 1989,
Ellis, 1979.

*> The development of the rest of paraconsistent probablllty theory lies beyond the
scope of this introduction. For a fuller discussion of the developed theory and
discussion of some other aspects of relevant probability theory, see Routley 1977.

*On this “paradox” see Makinson, 1964-65. The “lottery paradox” is further
considered in R. and V. Routley, 1975.

3" Details can be found in Routley, 1977. ‘
%% As to why, and for interesting suggestions as to how the elaboratlon should go
see Belnap, 1977.

*° See e.g. Haack, 1974, p. 109 fi.

“0 This approach to vagueness is taken in Pinter, 1980.
*! Haack, op. cit., p. 114.

42 A version of the inconsistent variant is found in Pefia, 1989.
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